Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore
نویسندگان
چکیده
We studied the blocking actions of external Ca2+, Mg2+, Ca2+, and other multivalent ions on single Ca channel currents in cell-attached patch recordings from guinea pig ventricular cells. External Cd or Mg ions chopped long-lasting unitary Ba currents promoted by the Ca agonist Bay K 8644 into bursts of brief openings. The bursts appear to arise from discrete blocking and unblocking transitions. A simple reaction between a blocking ion and an open channel was suggested by the kinetics of the bursts: open and closed times within a burst were exponentially distributed, the blocking rate varied linearly with the concentration of blocking ion, and the unblocking rate was more or less independent of the blocker concentration. Other kinetic features suggested that both Cd2+ and Mg2+ lodge within the pore. The unblocking rate was speeded by membrane hyperpolarization or by raising the Ba concentration, as if blocking ions were swept into the myoplasm by the applied electric field or by repulsive interaction with Ba2+. Ca ions reduced the amplitude of unitary Ba currents (50% inhibition at approximately 10 mM [Ca]o with 50 mM [Ba]o) without detectable flicker, presumably because Ca ions exit the pore very rapidly following Ba entry. However, Ca2+ entry and exit rates could be resolved when micromolar Ca blocked unitary Li+ fluxes through the Ca channel. The blocking rate was essentially voltage independent, but varied linearly with Ca concentration (rate coefficient, 4.5 X 10(8) M-1s-1); evidently, the initial Ca2+-pore interaction is outside the membrane field and much faster than the overall process of Ca ion transfer. The unblocking rate did not vary with [Ca]o, but increased steeply with membrane hyperpolarization, as if blocking Ca ions were driven into the cell. We suggest that Ca is both an effective permeator and a potent blocker because it dehydrates rapidly (unlike Mg2+) and binds to the pore with appropriate affinity (unlike Cd2+). There appears to be no sharp dichotomy between "permeators" and "blockers," only quantitative differences in how quickly ions enter and leave the pore.
منابع مشابه
Characterization and localization of two ion-binding sites within the pore of cardiac L-type calcium channels
L-type Ca channels from porcine cardiac sarcolemma were incorporated into planar lipid bilayers. We characterized interactions of permeant and blocking ions with the channel's pore by (a) studying the current-voltage relationships for Ca2+ and Na+ when equal concentrations of the ions were present in both internal and external solutions, (b) testing the dose-dependent block of Ba2+ currents thr...
متن کاملBlock by calcium of ATP-activated channels in pheochromocytoma cells
We have investigated the effects of Ca2+ on Na+ influx through ATP-activated channels in pheochromocytoma PC12 cells using single channel current recordings. Under cell-attached patch-clamp conditions with 150 mM Na+ and 2 mM Ca2+ in the pipette, the unitary current activity showed an open level of about -4.3 pA at -150 mV. The channel opening was interrupted by flickery noise as well as occasi...
متن کاملModification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa
There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...
متن کاملCalcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons.
Ca2+-activated K+ currents and their Ca2+ sources through high-threshold voltage-activated Ca2+ channels were studied using whole-cell patch-clamp recordings from freshly dissociated mouse neocortical pyramidal neurons. In the presence of 4-aminopyridine, depolarizing pulses evoked transient outward currents and several components of sustained currents in a subgroup of cells. The fast transient...
متن کاملMonovalent Permeability, Rectification, and Ionic Block of Store-operated Calcium Channels in Jurkat T Lymphocytes
We used whole-cell recording to characterize ion permeation, rectification, and block of monovalent current through calcium release-activated calcium (CRAC) channels in Jurkat T lymphocytes. Under physiological conditions, CRAC channels exhibit a high degree of selectivity for Ca2+, but can be induced to carry a slowly declining Na+ current when external divalent ions are reduced to micromolar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 88 شماره
صفحات -
تاریخ انتشار 1986